try this… a1|1+a1 a1|2+a1 -> a1|1 a1a2|1+a1+a2+a1a2 a1a2|4+2a1+2a2+a1a2 a1a2|9+3a1+3a2+a1a2 -> a1a2|3+a1+a2 a1a2|5+a1+a2 -> a1a2|2 a1a2a3|1+a1+a2+a3+a1a2+a2a3+a3a1+a1a2a3 a1a2a3|8+4a1+4a2+4a3+2a1a2+2a2a3+2a3a1+a1a2a3 a1a2a3|27+9a1+9a2+9a3+3a1a2+3a2a3+3a3a1+a1a2a3 a1a2a3|64+16a1+16a2+16a3+4a1a2+4a2a3+4a3a1+a1a2a3 -. a1a2a3|7+3a1+3a2+3a3+a1a2+a2a3+a3a1 a1a2a3|19+5a1+5a2+5a3+a1a2+a2a3+a3a1 a1a2a3|37+7a1+7a2+7a3+a1a2+a2a3+a3a1 -> a1a2a3|12+2a1+2a2+2a3 a1a2a3|18+2a1+2a2+2a3 -> a1a2a3|6 i believe the pattern continues…, i.e., a1a2…ak|k! together with a1…ak distinct –> (a1,a2,…ak)is a permutation of (1,2,…k)
may someone prove or disprove that