畢氏定理
引言
世界上唯一一條「不是」定理的定埋是甚麼?那就是著名的畢氏定理。眾所周知,畢氏定理是指直角三角形的斜邊(hypotenuse)的平方等於另外兩邊的平方之和,這種超過三百多種証明方法的定理,究竟是誰發現的?
最早的發現
早在公元前五、六世紀,在克羅托那有一個秘密組織「畢達哥拉斯學派」。這個組織相信「萬物皆源於數」,而且它無論在數論、幾何、天文、音樂等都有很高的造詣。這個教派有個很嚴格的規條,就是內部的發明及創作不可以對外宣揚。相傳這個學派發現畢氏定理後,宰了 100 頭牛來慶祝,所以「畢氏定理」又稱為「百牛定理」。
最早而嚴格的証明
由於這個學派不得對外宣揚,所以其發現在歷史上並無確實的記載。追溯歷史,最早對畢氏定理作嚴格證明的要算是希臘的歐幾里得,他在《幾何原本》編寫的證明是現代數學教科書採用的。
中國及埃及人的貢獻
公元一世紀,中國最古老的數學及天文著作《周髀》記載了周朝的大夫商高與周公的大段對話,指出夏禹治水時知曉利用 3 : 4 : 5 來構成三角形,時間上比不晚於埃及的最早記錄。《周髀》中更明確寫出計算直角三角形弦長的方法:「勾股各自乘,并而開方除之」。由此可知中國人在那時已掌握勾股定理(畢氏定理又名勾股定理)。
另外,數學史家 M. B. 康托爾(Moritz Benedikt Cantor,1829 – 1920)已推測古埃及人已懂得運用邊長為 3 : 4 : 5 的直角三角形作直角的概念,以達致測量、建築學上的用途。
「普林頓 322 號之謎」
一塊編號為「普林頓 322」的巴比倫泥板,它印有一組組完整的三列數字,像 (3, 4, 5) 等。起初學者以為這是古時的賬目表。後來經過伊格鮑爾 (Otto Neugebauer)及薩克斯(A. Sachs)的研究,謎團才在 1945 年解開。原來這一串數字是勾股數(一組能作為直角三角形的邊長的正整數稱為「勾股數」)。「普林頓 322」涉及的勾股數十分巨大,若巴比倫人不熟識勾股定及勾股數的參數表,根本無法靠巧合而湊出這些數字來。巴比倫人在公元前二千年已有這極出色的成就,實在令人驚嘆!